Problem
– 1: 
            Write programs to evaluate the
numerical value of I by Trapezoidal, Simpson’s 1/3 rule and Simpson’s 3/8 rule
and compare the result

Solution:
(a)  Input:
for
h = pi/8
clc 
clear all 
close all 
f = @(x) sin(x);
a = 0; 
b = pi/2; 
h = pi/8; 
n = (b-a)/h; 
t = (f(a)+f(b));
for i = 1:n-1
    t = t+2*f(a+i*h);
end
A_T = 0.5*h*t
s = (f(a)+f(b));
for j = 1:2:n-1
    s = s + 4*f(a+j*h);
end
for j = 2:2:n-2
    s = s + 2*f(a+j*h); 
end
A_S = (h/3)*s
s1 = (f(a)+f(b));
for i = 1:3:n-2
    s1=s1+3*f(a+i*h); 
end
for i = 2:3:n-1
    s1 = s1+3*f(a+i*h);
end
for i = 3:3:n-3
    s1=s1+2*f(a+i*h);
end
A_S1 = (3*h/8)*s1
Output:
            A_T     =
         0.9871
A_S
    =          1.0001
A_S1
  =          0.6287
Input: for
h = pi/4 
clc 
clear all 
close
all 
f =
@(x) sin(x);
a = 0; 
b =
pi/2; 
h = pi/4; 
n = (b-a)/h; 
t = (f(a)+f(b));
for i = 1:n-1
    t = t+2*f(a+i*h);
end
A_T = 0.5*h*t
s = (f(a)+f(b));
for j = 1:2:n-1
    s = s + 4*f(a+j*h);
end
for j = 2:2:n-2
    s = s + 2*f(a+j*h); 
end
A_S = (h/3)*s
s1 = (f(a)+f(b));
for i = 1:3:n-2
    s1=s1+3*f(a+i*h); 
end
for i = 2:3:n-1
    s1 = s1+3*f(a+i*h);
end
for i = 3:3:n-3
    s1=s1+2*f(a+i*h);
end
A_S1 = (3*h/8)*s1
Output:
A_T = 0.9481
A_S = 1.0023
A_S1 = 0.2945
(b)  Input:
for
h = 0.5 
clc 
clear all 
close all 
f = @(x) 1/(1+x);
a = 0; 
b = 1; 
h = 0.5; 
n = (b-a)/h; 
t = (f(a)+f(b));
for i = 1:n-1
    t = t+2*f(a+i*h);
end
A_T = 0.5*h*t
s = (f(a)+f(b));
for j = 1:2:n-1
    s = s + 4*f(a+j*h);
end
for j = 2:2:n-2
    s = s + 2*f(a+j*h); 
end
A_S = (h/3)*s
s1 = (f(a)+f(b));
for i = 1:3:n-2
    s1=s1+3*f(a+i*h); 
end
for i = 2:3:n-1
    s1 = s1+3*f(a+i*h);
end
for i = 3:3:n-3
    s1=s1+2*f(a+i*h);
end
A_S1 = (3*h/8)*s1
Output:
A_T = 0.7083
A_S = 0.6944
A_S1 = 0.2813
Input:
for
h = 0.25 
clc 
clear all 
close all 
f = @(x) 1/(1+x);
a = 0; 
b = 1; 
h = 0.25; 
n = (b-a)/h; 
t = (f(a)+f(b));
for i = 1:n-1
    t = t+2*f(a+i*h);
end
A_T = 0.5*h*t
s = (f(a)+f(b));
for j = 1:2:n-1
    s = s + 4*f(a+j*h);
end
for j = 2:2:n-2
    s = s + 2*f(a+j*h); 
end
A_S = (h/3)*s
s1 = (f(a)+f(b));
for i = 1:3:n-2
    s1=s1+3*f(a+i*h); 
end
for i = 2:3:n-1
    s1 = s1+3*f(a+i*h);
end
for i = 3:3:n-3
    s1=s1+2*f(a+i*h);
end
A_S1 = (3*h/8)*s1
Output:
A_T = 0.6970
A_S = 0.6933
A_S1
= 0.5531
Input: for h = 0.125
Input: for h = 0.125
clc 
clear all 
close all 
f = @(x) 1/(1+x);
a = 0; 
b = 1; 
h = 0.125; 
n = (b-a)/h; 
t = (f(a)+f(b));
for i = 1:n-1
    t = t+2*f(a+i*h);
end
A_T = 0.5*h*t
s = (f(a)+f(b));
for j = 1:2:n-1
    s = s + 4*f(a+j*h);
end
for j = 2:2:n-2
    s = s + 2*f(a+j*h); 
end
A_S = (h/3)*s
s1 = (f(a)+f(b));
for i = 1:3:n-2
    s1=s1+3*f(a+i*h); 
end
for i = 2:3:n-1
    s1 = s1+3*f(a+i*h);
end
for i = 3:3:n-3
    s1=s1+2*f(a+i*h);
end
A_S1 = (3*h/8)*s1
Output:
A_T = 0.6941
A_S = 0.6932
A_S1 = 0.5563
Problem
– 2: 
            Add command in the program of
problem 1 as necessary to obtain an integration of a function y=f(x), from its
set of data points given below: 
| 
x | 
x0=1 | 
x1=2 | 
x2=3 | 
x3=4 | 
x4=5 | 
x5=6 | 
x6=7 | 
| 
y | 
y0=2 | 
y1=5 | 
y2=10 | 
y3=17 | 
y4=26 | 
y5=37 | 
y6=50
   | 
Solution: 
clc 
clear all 
close all 
x = [1 2 3 4 5 6 7];
y = [2 5 10 17 26 37 50];
a = x(1,1); 
b = x(1,7); 
n = b - a; 
h = (b - a)/n; 
t = 0.5*(y(1,1)+y(1,7));
for i = 2:n
    t = t+y(1,i);
end
A_T = h*t
s1 = (y(1,1)+y(1,7));
for i = 2:2:n 
    s1 = s1+4*y(1,i);
end
for i = 3:2:n-1
    s1 = s1 + 2 * y(1,i); 
end 
A_S1 = (h/3)*s1
s2 = (y(1,1)+y(1,7));
for i = 2:3:n-1
    s2=s2+3*y(1,i); 
end
for i = 3:3:n
    s2 = s2+3*y(1,i);
end
for i = 4:3:n-2
    s2=s2+2*y(1,i);
end
A_S2 = (3*h/8)*s2
Output:
A_T = 121
A_S1 = 120
A_S2 = 120